

Model paper-II Exam-2016 Paper-Software Engineering BCA-III

_

Time: 3 Hrs				MM:50				
/) Th will l	e Ques have to	tion paper contains 40 multiple pick the correct one (each carr	e choice q ying ½ m	uest ark	ions with four cl).	hoices and s	tudent	
1.	Whick (a) (c)	h of the items listed below is not on Process (Methods	e of the sof (b) Ma (d)	ftwa anufa	re engineering laye acturing Tools	rs?	()	
2.	Whick (a) (b) (c) (d)	h of the following are the 5 generic Communication, planning, model Communication, risk managemer Analysis, designing, programmin Analysis, planning, Designing, pr	software en ling, constr nt, measure g, debuggi rogrammin	ngin ructi emen ing, 1 ig, te	eering framework a on, deployment at, production, revie maintenance sting	ewing		
3.	Softw	are processes can be constructed ou	t pre-exist	ing s	oftware patterns to	best beet the	need of	
a soft	ware pro (a)	ject. True			(b) False	()		
4.	Whick (a) (c)	h of these are standards for assessing SEI ISO9001	g software (b) (d)	proc	cesses? Spice Both B and C	()	()	
5.	The li (a) (c)	near sequential model of software d Classical life cycle model Waterfall model	levelopmer (b) (d) Bo	nt is oth A	also known as the: Fountain model and B	()		
6.	The ra (a) (b) (c) All of	apid application model is: Another name for component-bas A useful approach when a custon A high speed adaption of the line the above	sed develop her can not ar sequent	pmer defi ial m	nt ine requirements cla nodel (early)	(d)	
7.	Evolu (a)	tionary software process models: Are iterative in nature						

(b) Can easily accommodate product requirement change

	(c) (d)	Do not generally produce throw All of the above	v away s <u>y</u>	ystems		()	
8.	The prototyping model of software development is:						
	(a)	A reasonable approach when re	quireme	nt are w	ell defined		
	(b)	A useful approach when a custo	omer can	not larg	ge development teams		
	(c) (d)	A risky mode that producers a r	meaning	ful produ	uct		()
9.	The spi	ral model of software developm	ent is:				
	(a)	Ends with the delivery of the so					
	(b)	Is more chastic than the increm					
	(c) (d)	Includes project risks evaluation	n during	each ite	ration	()	
	(u)	All of the above				()	
10.	The con	nponent based development mo	del is:	. desian			
	(a)	Only appropriate for computer hardware design					
	(0)	Works best when object techno					
	(d)	Not cost effective by known qu	antifiabl	e softwa	are metrics		()
11.	Which	of these is not one of the phase	e names	defined	l by the unified process	model	for
softwar	re devel	opment.	(b)	Flahor	ation phase		
	(a)	Construction phase	(d)	Validat	tion phase		
	(C)	Construction phase	(u)	v anua	tion phase		
12.	Which of the following is not necessary to apply agility to a software process:						
	(a)	Eliminate the use of project planning and testing					
	(b)	Only essential work products produced					
	(c)	Process allows team to streamli	ne tasks				
	(d)	Uses incremental product deliv	ery strate	egy			()
13. and cor	In agile ntinuou	software processes the highers s delivery of valuable software	st priori e.	ty is to s	satisfy the customer	throug	h early
	(a)	True					
	(b)	False					()
14. model?	What a	re the three framework activities	for the a	adaptive	Software Development	(ASD)	process
	(a)	Analysis, design coding					
	(b)	Feasibility study, functional design, implementation					
	(c)	Requirement gathering, adaptiv	ve cycle p	olanning	iterative development		(d)
	specula	tion, collaboration learning				()	
15.	Agile n	nodeling (AM) provides guidanc	e to prac	titioner	during which of these	softwar	e tasks ?
	(a)	Analysis		(d)	Design Testing		()
	(c)	Couing Both a and b		(a)	resting		()
	(0)	Doui a allu U					

16. Software engineers collaborate with customers to define which of the following:

	(a) (b)	Customer visible usages scenarios Important software outputs						
	(c)	System inputs and output						
	(d)	All of the above		()				
17.	Every	Everyone in the software team should be involved in the planning activity so that we						
	(a)	Reduce the granularity of the plan						
	(b)	Analyze requirement in depth						
	(c)	Get all team member to 'sing up" to the	plan					
	(d)	Begin design			()			
18.	Analysis models depict software in which three representations:							
	(a)	Architecture, interface, component						
	(b)	cost, risk, schedule						
	(c)	Information, function, behavior						
	(d)	None of the above			()			
19.	Which of the following is not one of the principles of good coding?							
	(a)	Create unit tests before you begin codir	ng					
	(b)	Create a visual layout that aids understanding						
	(c)	Keep variable names short so that code is compact						
	(d)	Write soft documenting code, not progr	am doc	umentation	()			
20.	Whic	Which of the following are valid reasons for collecting customer feedback concerning						
	delive	elivered software?						
	(a)	Allows developers to made change to the delivered increment						
	(b)	b) Delivery schedule can be revised to reflect changes						
	(C)	 Developers can identify to incorporate into next increment All of the above 						
	(d)	All of the above						
	(a)	A new class by extending an existing class						
	(\mathbf{D})	An object which interfaces with outside world						
	(C) (d)	An object which interfaces with outside world Some message can result in different actions						
	(u)	(u) Same message can result in unrelent actions						
21.	Whick	h one is not an essential part of OOAD?						
	(a)	Class diagram	(b)	Object diagram				
	(c)	Sequence diagram	(d)	ER diagram	()			
22.	Software design concept is related to :							
	(a)	Algorithms	(b)	Flow Charts				
	(c)	Modularity	(d)	Reliability	()			
23.	The relative functional strength of a module depends on:							
	(a)	Coupling						
	(b)	Cohesion						
	(c)	Coupling & Cohesion						
	(d)	Expendability			()			

24. UML notations that can be used to model the hardware and software elements of a system are:

	(a) (c)	Activity diagrams Deployment diagrams	(b) (d)	Class diagrams All of the above	()	
25.	The r	esults of the requirement engineering elab	oration	task is an analysis mod	lel that	defines
which	of the	Following problem domain(s)?		······		
	(a)	Information				
	(b)	Functional				
	(c)	Behavrioual				
	(d)	All of the above			()	
26.	Whic	h of following is not a UML diagram used	l creatii	ng a system analysis mo	odel?	
	(a)	Activity diagram	(b)	Class diagram		
	(c)	Dataflow diagram	(d)	State diagram		()
27.	The c	ata dictionary contains descriptions of eac	h softv	vare:		
	(a)	Control item				
	(b)	Data Object				
	(c)	Notation				
	(d)	Both a and b				()
28.	Which of these is not an elements of an object oriented analysis model?					
	(a)	Behavrioural elements				
	(b)	Class based elements				
	(c)	Data elements				
	(d)	Scenario-based elements				()
29.	A generalized description of a collection of similar object is a:					
	(a)	Class				
	(b)	Instance				
	(c)	Subclass				
	(d)	Super class				()
20	Cont	al flow diagrams are				
50.	(a)	Needed to model event driven system				
	(a)	Required for all system				
	(0)	Useful for modeling real time systems				
	(d)	Both a and c				()
	(0)					
31.	The i	mportance of sotfware design can be sumr	narized	l in a single word:		
	(a)	Accuracy				
	(b)	Complexity				
	(c)	Efficiency				
	(d)	Quality				()
32.	Cohesion is a qualitative indication of the degree to which a module?					
	(a)	Can be written more compactly				
	(b)	Focus on just one thing				
	(c)	Is able to complete its function in a tim	ely mai	nner		
	(d)	Is connected to there modules and the o	outside	world	()	

33.	Coupling is a qualitative indication of the degree to which a module:							
	(a)	(a) Can be written more compactly						
	(b)	Focuses on just one things						
	(c)	Is able to complete its function in a ti	mely mar	nner				
	(d)	Is connected to there modules and the	e outside	world	()			
34.	The b	best reason for using independent softwa	re test tea	ms is that:				
	(a)	Software developers do not need to do any testing						
	(b)	A test team will test the software more thoroughly						
	(c)	Testers do not get involved with the p	project un	til testing begins		(d)		
	Argu	ments between developers and testers re	duced	0 0	()			
35.	What	is the normal order of activities in which	h traditio	nal 'software testing'.				
	(a)	Integration testing	(b)	System testing				
	(c)	Unit testing	(d)	Validation testing				
	(a)	A,C,C,B	(b)	B,D,A,C				
	(c)	C,A,D,B	(d)	D,B,C,A		()		
36	Whic	h of the following need to be assessed d	uring unit	testing?				
00.	(a)	Algorithmic performance	uning unin	tosting.				
	(b)	Error handling						
	(c)	Error handling						
	(d)	Error handling and execution paths				()		
37.	Bottom up integration testing has as 't's major advantages that:							
	(a)	Major decision points are tested early	7					
	(b)	No drivers need to be written						
	(c)	No stubs need to be written						
	(d)	Regression testing is not required				()		
38. is add	Regre	ession testing should be a normal part of	integratio	on testing because as a	new	module		
15 auu	(a)	Control logic is invoked						
	(a) (b)	Data flow paths are established						
	(0)	Drivers require testing						
	(d)	Both a and B				()		
•	(0)							
39.	Smoke testing might best be described as:							
	(a)	Bullet proofing shrink wrapped softw	vare					
	(b)	Rolling integration testing						
	(c)	Lesting that hides implementation err	or					
	(d)	Unit testing for small programs			()			
40.	Acce	ptance tests are normally conducted by t	he:					
	(a)	Developer (b)End users (c)Test team	(a)Stster	ns engineers				

II) Attempt any four descriptive types of questions out of the six. All questions carry 7½ marks each.

Q.1 Why is Management Process important in a software Project? Illustrate the relationship between 'Development Process' and ' Management Process''.

Q.2 Describe in detail the 4 P's of project management?

Q.3 What is software project planning? Write a note on the approaches suggested by Putnam & Myers to the sizing problem.

Q.4 What are the design principles ? Explain in details the flow of information from analysis model to the design model.

Q.5 Explain the prototype model of SDLC?

Q.6 Writes short notes on any three:

(a) SRS

(b) Cost Estimation Model

(c) Process metrics Vs. Product metrics